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Abstract: The massless scalar quasinormal frequencies of a stationary axisymmetric

Einstein-Maxwell dilaton-axion (EMDA) black hole are investigated by using Leaver’s con-

tinued fraction method. It is shown that in the complex plane the frequencies move coun-

terclockwise and get a spiral-like shape as the angular momentum per unit mass a increases

to its extremal value or the dilaton D decreases to its extremal value for the rotating black

hole. However, for the non-rotating Garfinkle-Horowitz-Strominger dilaton (GHSD) black

hole, the dilaton parameter D, which is related to the electric charge of this EMDA black

hole, cannot make the frequencies spire in the complex ω plane, which is qualitatively dif-

ferent from the charge of the Reissner-Nordström (RN) black hole. The so-call “Spiral-like

Criterion” is obtained and it points out that the frequencies won’t spire in the complex ω

plane if the heat capacity for the considered black hole is always negative and vice versa.

The most interesting outcome of our calculation is that the critical point, at which the

imaginary part of the wave function related to time-dependent part (e−iωt) begins to os-

cillate obviously for the given quantum number, is just the second order phase transition

point of Davies. The fact seems to imply that there is some relation between the dynamical

evolution and thermodynamic instabilities for the black hole.
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1. Introduction

It is well known that the quasinormal frequencies have become astrophysically significant

with the realistic possibility of gravitational wave detection because they provide us the

information about the main parameters of a black hole such as its mass M , charge Q

and angular momentum per unit mass a ≡ J/M [1, 2]. In addition, the study of the

quasinormal frequencies for the highly damped modes may lead to a deeper understanding

of the thermodynamic properties of black holes in loop quantum gravity since the real

part of quasinormal frequencies with a large imaginary part for the scalar field in the

Schwarzschild black hole is equal to the Barbero-Immirzi parameter which is introduced by

hand in order that the loop quantum gravity reproduces correct entropy of the black hole [3,

4], and the quasinormal frequencies of anti-de Sitter black holes have a direct interpretation

in terms of the dual conformal field theory [5 – 7]. Thus, quasinormal frequencies for various

black holes have been studied extensively [8]–[26].

After Regge and Wheeler first studied the linear perturbations of static black holes in

1957 [8], people proposed different methods to obtain the quasinormal frequencies [9 – 11, 1].

In 1985, Leaver presented a continued fraction method for calculating the quasinormal fre-

quencies of both static and rotating black holes [12]. Then, Onozawa et al improved this

method for the extreme case in 1996 [13]. Leaver’s method provides extremely accurate

values for the quasinormal frequencies of each black hole which involves scalar, electromag-

netic and gravitational perturbations [14, 15]. Recently it has been extended to compute

the Dirac quasinormal frequencies [16 – 19]. Although there are several methods to pre-

cisely get the quasinormal frequencies of static black holes, the continued fraction method
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is the only one which can be generalized to the rotating cases, such as the Kerr [14] and

Kerr-Newman (KN) black holes [15, 18], where besides the quasinormal frequencies we

must evaluate the separation constants which are the angular eigenvalues associated with

the Teukolsky equations. And as far as we know nobody use this method to study the

rapidly damped modes of a dilaton black hole.

Nowadays, it seems that the superstring theory is the most promising candidate for a

consistent quantum theory of gravitation. Thus, many people have begun to investigate the

quasinormal frequencies of dilaton black holes [21 – 26]. For instance, Konoplya explored the

quasinormal frequencies of the electrically charged dilaton black hole and found the effect

of the dilaton parameter on quasinormal frequencies. However, they only discussed the

quasinormal frequencies of the static, spherically symmetric black holes. So it is worthwhile

to extend the investigation to quasinormal frequencies of the dilaton black hole being the

stationary axisymmetric solution of the so-called low-energy string theory [27, 28] and to

see how they differ from the KN black hole as a result of different horizons and singularities

as compared to the KN black hole [15, 18].

On the other hand, one of important characteristics of a black hole is its thermody-

namic property. For the static, spherically symmetric Schwarzschild black hole, the heat

capacity of the black hole is always negative and the black hole is thermodynamically un-

stable. But for the static, spherically symmetric and charged Reissner-Nordström (RN)

black hole, rotating Kerr black hole, and more general KN black hole, their heat capacities

are positive in some parameter regions and negative in other regions. Davies pointed out

that the phase transition appears in black hole thermodynamics and the second order phase

transition point is the one where the heat capacity diverges [29 – 31]. As one knows, the

quasinormal frequencies of a black hole can test the stability of the spacetime against small

perturbation [1]. Thus, when we study the dynamical evolution of the external field per-

turbation around this EMDA black hole, we also discuss some important thermodynamic

properties of this black hole and try to find out whether there is some relation between

them.

The organization of this paper is as follows. In section 2 the wave equations of this

stationary axisymmetric EMDA black hole with a massless scalar field are obtained. In

section 3 a short description of the continued fraction method is given. In section 4 the

numerical results for the quasinormal frequencies of this considered black hole are presented.

In section 5 some relation between the dynamical evolution and thermodynamic instabilities

is shown. We summarize and discuss our conclusions in the last section.

2. Wave equations of the EMDA black hole

In the Boyer-Lindquist coordinates (t, r, θ, φ), the stationary solution for the axisymmetric

EMDA black hole is given by [27, 28]

ds2 = −Σ − a2 sin2 θ

∆
dt2 − 2a sin2 θ

∆

[

(r2 − 2Dr + a2) − Σ
]

dtdϕ +
∆

Σ
dr2

+ ∆dθ2 +
sin2 θ

∆

[

(r2 − 2Dr + a2)2 − Σa2 sin2 θ
]

dϕ2, (2.1)
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with

Σ = r2 − 2Mr + a2, ∆ = r2 − 2Dr + a2 cos2 θ, (2.2)

where the electric charge Q =
√

2κD(D − M) (with κ = e2Φ0), and D, M and a represent

the dilaton, mass and angular momentum per unit mass of the black hole respectively. The

Arnowitt-Deser-Misner (ADM) mass is MADM = M − D. If we set a = 0, this solution is

just the non-rotating Garfinkle-Horowitz-Strominger dilaton (GHSD) metric [27, 32]. Here

and hereafter we have taken G = c = 1.

Obviously, the stationary axisymmetric EMDA black hole differs considerably from

the KN black hole: (1) Two horizons of the KN black hole are given by r± = M ±
√

M2−Q2−a2, whereas for the EMDA black hole we have r±=[MADM−Q2/(2κMADM)]±
√

[MADM−Q2/(2κMADM)]2−a2; (2) The KN metric has singularities at r2+cos2 θ=0, but

the EMDA black hole has singularities at r2−2Dr+cos2 θ = 0. Thus, it is worthwhile to

investigate the massless scalar quasinormal frequencies of this EMDA black hole in order

to see how these differ from the KN black hole.

In the background geometry of this stationary axisymmetric EMDA black hole, a

massless scalar field Φ evolves according to the curved space Klein-Gordon equation

1√−g

∂

∂xµ

(√−ggµν ∂Φ

∂xν

)

= 0, (2.3)

where g is the determinant of the metric. We can easily derive the master equation that

governs the evolution of massless scalar perturbations of this EMDA spacetime

(r2 − 2Dr + a2)2 − Σa2 sin2 θ

Σ

∂2Φ

∂t2
− ∂

∂r

(

Σ
∂Φ

∂r

)

− 1

sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

−Σ − a2 sin2 θ

sin2 θΣ

∂2Φ

∂ϕ2
+

4a(M − D)r

Σ

∂2Φ

∂t∂ϕ
= 0. (2.4)

Assuming that the azimuthal and time dependence of our fields will be the form

e−i(ωt−mϕ), we get the separated differential equation for an angular part of the perturba-

tions

[(1 − u2)Ylm,u(u)],u + (a2ω2u2 − m2

1 − u2
+ Alm)Ylm(u) = 0, (2.5)

and that for a radial part

[

d

dr

(

Σ
d

dr

)

+
(r2 − 2Dr + a2)2ω2 − 4aωm(M − D)r + a2m2

Σ
− Alm − a2ω2

]

Rlm(r) = 0,

(2.6)

where u = cos θ. Therefore, we will study the quasinormal frequencies of the stationary

axisymmetric EMDA black hole with massless scalar fields from eqs. (2.5) and (2.6).

3. The continued fraction method

For this stationary axisymmetric EMDA black hole, in eq. (2.5) Alm is the angular sepa-

ration constant which can be solved numerically following Leaver [12], and it is reduced to
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l(l + 1) in the Schwarzschild case. Boundary conditions for eq. (2.5) are that Ylm(u) are

finite at the regular singular points u = ±1, where the indices are given by ±m/2. So a

solution to eq. (2.5) can given by

Ylm(u) = eaωu(1 − u2)|m|/2
∞
∑

n=0

aθ
n(1 + u)n, (3.1)

where the superscript θ denotes the association with the angular equation. The expansion

coefficients are related by a three-term recurrence relation and the boundary condition

at u = +1 is satisfied only by its minimal solution sequence. The three-term recurrence

relation is expressed as

αθ
0a

θ
1 + βθ

0aθ
0 = 0,

αθ
naθ

n+1 + βθ
naθ

n + γθ
naθ

n−1 = 0, (n ≥ 1), (3.2)

where

αθ
n = −2(n + 1)(n + |m| + 1),

βθ
n = n(n − 1) + 2n(|m| + 1 − 2aω) − [2aω(|m| + 1) − |m|(|m| + 1)] − (a2ω2 + Alm),

γθ
n = 2aω(n + |m|). (3.3)

We will obtain the minimal solution if the angular separation constant Alm is a root of the

continued fraction equation

0 = βθ
0 − αθ

0γ
θ
1

βθ
1−

αθ
1γ

θ
2

βθ
2−

αθ
2γ

θ
3

βθ
3−

αθ
3γ

θ
4

βθ
4−

· · · . (3.4)

It is well known that the quasinormal frequencies are defined to be the modes with

purely ingoing waves at the event horizon and purely outgoing waves at infinity [11]. Obvi-

ously, the boundary conditions of the wave function Rlm(r) at the event horizon (r = r+)

and infinity (r → +∞) for this EMDA black hole can be written as

Rlm(r) ∼ (r − r+)−iσ+ , r → r+,

Rlm(r) ∼ r−1+2i(M−D)ωeiωr, r → ∞, (3.5)

where σ± = 2(M−D)ωr±−am
b and b = 2

√
M2 − a2.

Thus, a solution to eq. (2.6) which satisfies the desired behavior at the boundary should

be

Rlm(r) = eiωr(r − r−)−1+2i(M−D)ω+iσ+(r − r+)−iσ+

∞
∑

n=0

ar
n

(

r − r+

r − r−

)n

. (3.6)

The expansion coefficients here are again defined by a three-term recurrence relation start-

ing with a0 = 1:

αr
0a

r
1 + βr

0a
r
0 = 0,

αr
nar

n+1 + βr
nar

n + γr
nar

n−1 = 0, (n ≥ 1), (3.7)
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where the recurrence coefficients αr
n, βr

n and γr
n are given in terms of n and the black-hole

physical parameters by

αr
n = n2 + (c0 + 1)n + c0,

βr
n = −2n2 + (c1 + 2)n + c3,

γr
n = n2 + (c2 − 3)n + c4 − c2 + 2, (3.8)

with

c0 = 1 − 2i(M − D)ω − 2i

b
[2M(M − D)ω − am] ,

c1 = −4 + 2iω[4(M − D) + b] +
4i

b
[2M(M − D)ω − am] ,

c2 = 3 − 6i(M − D)ω − 2i

b
[2M(M − D)ω − am] ,

c3 =
8(M − D)ω + 2i

b
[2M(M − D)ω − am] − 1 + iω[4(M − D) + b] − 2amω

+ω2[8(M − D)2 + 4(M − D)b + 8M(M − D) − a2] − Alm,

c4 = 1 − 8(M − D)2ω2

−6i(M − D)ω − 8(M − D)ω + 2i

b
[2M(M − D)ω − am] . (3.9)

The radial series solution (3.6) converges and the boundary condition (3.5) is satisfied as

the frequency ω is a root of the three-term continued fraction equation

0 = βr
0 − αr

0γ
r
1

βr
1−

αr
1γ

r
2

βr
2−

αr
2γ

r
3

βr
3−

αr
3γ

r
4

βr
4−

· · · . (3.10)

To calculate these quasinormal frequencies using Leaver’s continued fraction method,

we will seek the roots which satisfy both three-term recurrence relation eqs. (3.4) and (3.10)

for a given D, a, l and m.

4. Numerical results

In this section we present the numerical results obtained by using Leaver’s contin-

ued fraction method. In order to compare with other authors’ results, we will take

2MADM = 2(M − D) = 1. Because of r± = MADM + D ±
√

(MADM + D)2 − a2, we

have (MADM + D)2 > a2. Notice that the dilaton parameter D is negative [27, 28] but the

angular momentum per unit mass a is positive. Thus, as D → 0 and a → 0 our results

reduce to the static Schwarzschild case, as a → 0 reduce to the static GHSD case and

D → 0 reduce to the rotating Kerr case. The continued fractions eqs. (3.4) and (3.10) can

be evaluated by using an excellent method known as modified Lentz’s algorithm [33]. The

results will be organized into two subsections: the dependence on the angular momentum

per unit mass and the dilaton.

– 5 –



J
H
E
P
0
1
(
2
0
0
7
)
0
4
4

a D = 0 D = −0.1 D = −0.15 D = −0.2 D = −0.25

0 0.220910-0.209791i 0.238212-0.213368i 0.248595-0.215288i 0.260585-0.217266i 0.274736-0.219234i

0.1 0.221535-0.209025i 0.239050-0.212110i 0.249579-0.213604i 0.261746-0.214915i 0.276091-0.215755i

0.15 0.222315-0.208017i 0.240077-0.210417i 0.250757-0.211294i 0.263058-0.211596i 0.277350-0.210610i

0.2 0.223398-0.206506i 0.241452-0.207790i 0.252238-0.207606i 0.264386-0.206060i 0.277067-0.201490i

0.25 0.224762-0.204366i 0.243020-0.203880i 0.253553-0.201874i 0.263845-0.197008i -

0.3 0.226341-0.201397i 0.244284-0.198055i 0.252769-0.192983i - -

0.35 0.227958-0.197264i 0.243279-0.189363i - - -

0.4 0.229074-0.191402i - - - -

0.45 0.227695-0.183138i - - - -

0.49 0.221229-0.178964i - - - -

a D = −0.3 D = −0.35 D = −0.4 D = −0.45 D = −0.49

0 0.291943-0.221038i 0.313799-0.222295i 0.343595-0.221904i 0.390392-0.215480i 0.471221-0.180477i

0.1 0.293390-0.215417i 0.314334-0.211793i - - -

0.15 0.293347-0.206453i - - - -

≥ 0.2 - - - - -

Table 1: Fundamental scalar quasinormal frequencies of the EMDA metric with l = m = 0 for

selected values of the dilaton and angular momentum per unit mass. Dashed entries in this table

correspond to combinations of D and a for which (MADM + D)2 ≤ a2.

0.1 0.2 0.3 0.4 0.5

ΩR

-0.725

-0.7

-0.675

-0.65

-0.625

-0.6

-0.575

-0.55

Ω
I
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0.1 0.2 0.3 0.4 0.5

a

0.1
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R

n=1,l=m=0

0.1 0.2 0.3 0.4 0.5

a

-0.72
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Ω
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0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Ω
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0.1 0.2 0.3 0.4 0.5

a
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Ω
I

n=0,l=m=0

Figure 1: Left two panels show trajectories in the complex ω plane of the first two scalar quasi-

normal frequencies of the EMDA black hole for l = m = 0. In each panel, the bottom dashed line

corresponds to modes of non-rotating GHSD black hole, i.e., a = 0 and D = 0 → −0.5. The other

three lines from left to right on this dashed line correspond to modes of increasing a from zero to its

extremal value for D = 0, −0.2 and −0.4 respectively. The other panels draw the real part ωR and

imaginary part ωI of the quasinormal frequencies versus a. These panels tell us that, for l = m = 0,

both the real and imaginary parts are oscillatory functions of a and the oscillation begins earlier

and earlier as the dilaton D decreases from the overtone number n = 1.

4.1 Dependence on the angular momentum per unit mass

In table 1 we give numerical results for the fundamental scalar quasinormal frequencies with

l = m = 0 as a function of the dilaton D and angular momentum per unit mass a. Dashed

entries in this table correspond to combinations of D and a for which (MADM + D)2 ≤ a2.

The scalar quasinormal frequencies of the EMDA black hole for n = 0, 1 and l = m = 0
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n=6,l=1,m=0
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Ω
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n=6,l=1,m=0
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a

-3.15

-3.1

-3.05

-3

-2.95

-2.9

-2.85

Ω
I

n=6,l=1,m=0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ΩR

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

Ω
I

n=5,l=1,m=0
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Figure 2: Left four panels describe the behavior of the scalar quasinormal frequencies of the EMDA

black hole for n = 3, 4, 5 and 6 in the complex ω plane for l = 1, m = 0. In each panel, the bottom

dashed line corresponds to modes of non-rotating GHSD black hole, i.e., a = 0 and D = 0 → −0.5.

The other three lines from left to right on this dashed line correspond to modes of increasing a

from zero to its extremal value for D = 0, −0.2 and −0.4 respectively. The other panels draw the

real part ωR and imaginary part ωI of the quasinormal frequencies versus a. These panels show

that, for n ≥ 4, both the real and imaginary parts are oscillatory functions of a and the oscillation

begins earlier and earlier as the dilaton D decreases or the overtone number n increases with l = 1,

m = 0. For clarity we don’t draw modes with other values of m.

are shown by figure 1 and those for n = 3, 4, 5, 6 and l = 1, m = 0 are shown by figure 2.

The left columns in the figures 1 and 2 describe the behavior of quasinormal frequencies in

the complex ω plane which show that the frequencies generally move counterclockwise as

the angular momentum per unit mass a increases (the three lines from left to right on the

dashed line). They get a spiral-like shape, moving out of their Schwarzschild (a = 0 and

D = 0) or non-rotating GHSD black hole (a = 0 and D = 0 → −0.5) values and “looping

in” towards some limiting frequency as the angular momentum per unit mass tends to the

extremal value a − D = 0.5. For a given angular quantum number l, we observe that the

number of spirals increases as the overtone number n increases. Though the dependence of

the frequencies on the quantum number l is quite complicated, this conclusion is also true

for higher values of l, which agrees with other authors’ analysis [14, 15, 18, 19]. However,
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Figure 3: Left two panels show trajectories in the complex ω plane of the first two scalar quasi-

normal frequencies of the EMDA black hole for l = m = 0. In each panel, the left dashed line

corresponds to modes of the rotating Kerr black hole, i.e., D = 0 and a = 0 → 0.5. The other three

lines from bottom to top on this dashed line correspond to modes of decreasing D from zero to its

extremal value for a = 0, 0.2 and 0.4 respectively. The other panels draw the real part ωR and

imaginary part ωI of the quasinormal frequencies versus D. These panels tell us that, the dilaton D

cannot make the frequencies spire in the complex plane for the non-rotating GHSD black hole, but

both the real and imaginary parts are oscillatory functions of D and the oscillation begins earlier

and earlier as the angular momentum per unit mass a increases for the rotating black hole (i.e.,

a 6= 0) with l = m = 0 from the overtone number n = 1.

for a given overtone number n, the increasing l has the effect of “unwinding” the spirals,

as we see in the two figures that the spiral begins at n = 1 for l = 0 but starts at n = 4

for l = 1 with m = 0. The second and last columns in the figures 1 and 2 illustrate that

the real and imaginary parts of the quasinormal frequencies are the oscillatory functions

of the angular momentum per unit mass a. The oscillation starts earlier and earlier as the

overtone number n grows for a fixed l, but it begins later and later as the angular quantum

number l increases for a fixed n. Obviously, these properties are similar to the quasinormal

frequencies of the KN black hole [15, 18].

4.2 Dependence on the dilaton

Figures 3 and 4 obviously show that the intermediate decay of the massless scalar per-

turbation around the EMDA black hole depends on the dilaton parameter D. For the

non-rotating GHSD black hole (a = 0), the real part of the quasinormal frequencies ωR

increases as D decreases, but the imaginary part ωI decreases first and then increases.

Notice that the dilaton parameter D, which is related to the electric charge of this EMDA

black hole, cannot make the frequencies spire in the complex ω plane, which is qualitatively

different from the charge Q of the RN black hole [19]. However, for the rotating black hole

(i.e., a 6= 0), it is found that the frequencies generally move counterclockwise as the dilaton

D decreases (the two lines from middle to top on the dashed line). They get a spiral-like

shape, moving out of their rotating Kerr black hole values and “looping in” towards some

limiting frequency as the dilaton tends to the extremal value a − D = 0.5. For a given
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Figure 4: Left four panels describe the behavior of the scalar quasinormal frequencies of the EMDA

black hole for n = 3, 4, 5 and 6 in the complex ω plane for l = 1, m = 0. In each panel, the left

dashed line corresponds to modes of the rotating Kerr black hole, i.e., D = 0 and a = 0 → 0.5. The

other three lines from bottom to top on this dashed line correspond to modes of decreasing D from

zero to its extremal value for a = 0, 0.2 and 0.4 respectively. The other panels draw the real part

ωR and imaginary part ωI of the quasinormal frequencies versus D. These panels show that, for

n ≥ 4, the dilaton D cannot make the frequencies spire in the complex plane for the non-rotating

GHSD black hole, but both the real and imaginary parts are oscillatory functions of D and the

oscillation begins earlier and earlier as the angular momentum per unit mass a increases or the

overtone number n grows for the rotating black hole (i.e., a 6= 0) with l = 1, m = 0. For clarity we

don’t draw modes with other values of m.

angular quantum number l, we observe that the number of spirals increases as the overtone

number n increases, which is similar to other authors’ work [14, 15, 18, 19]. But for a given

overtone number n, the increasing l has the effect of “unwinding” the spirals, as we see in

the two figures that the spiral begins at n = 1 for l = 0 but starts at n = 4 for l = 1 with

m = 0. The second and last columns in the figures 3 and 4 illustrate that the real and

imaginary parts of the quasinormal frequencies are the oscillatory functions of the dilaton

D. The oscillation starts earlier and earlier as the angular momentum per unit mass a

increases or the overtone number n grows for a fixed l, but it begins later and later as the

angular quantum number l increases for a fixed n. From the previous subsection, it should
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be noted that the oscillatory functions of the angular momentum per unit mass a depend

on the dilaton D, and the oscillation begins earlier and earlier as the dilaton D decreases.

Therefore, our study shows the qualitatively different properties between the dilaton

spacetimes in string theory and those appearing in general relativity because of the ap-

pearance of dilaton.

5. Spiral-like criterion

From the previous section we know that in the complex plane the frequencies move coun-

terclockwise and get a spiral-like shape as the angular momentum per unit mass a increases

to its extremal value or the dilaton D decreases to its extremal value for the rotating black

hole, but for the non-rotating Garfinkle-Horowitz-Strominger dilaton (GHSD) black hole,

the dilaton parameter D cannot make the frequencies spire in the complex ω plane, which is

qualitatively different from the charge of the Reissner-Nordström (RN) black hole [19]. In

this section we will give a criterion which can be used to determine whether the frequencies

spire or not in the complex ω plane.

It is well known that the heat capacity CJQ of the EMDA black hole is given as [34]

CJQ = −T

(

∂2F

∂2T

)

J,Q

=
TS3MADM

πJ2 − S3T 2
, (5.1)

where the Hawking temperature T , angular momentum J , Helmoltz free energy F , and

Bekenstein-Hawking entropy of the black hole S are [34]

T =
1

4π

r+ − r−
r2
+ − 2Dr+ + a2

, J = a(M − D) = aMADM,

F =
1

2

(

MADM − D +
J2

M2
ADMr+

)

, S = π(r2
+ − 2Dr+ + a2). (5.2)

This heat capacity is positive in some parameter region and negative in other region.

It is obvious that the divergent point of the heat capacity occurs at πJ2−S3T 2 = 0. Thus,

the top two panels in figure 5 we draw the behavior of the heat capacity CJQ versus a

(or D) for some fixed values D = 0, −0.2 and −0.4 respectively (or a = 0, 0.2 and 0.4

respectively). In each panel, the different vertical lines correspond to the singular points

of the heat capacity. It is shown that for the non-rotating GHSD black hole (i.e., a = 0),

there is no the singular point of the heat capacity and its heat capacity is always negative,

which is contrary to other cases. It just corresponds to the conclusion given in the previous

section that the dilaton parameter D cannot make the frequencies spire in the complex ω

plane for the non-rotating GHSD black hole which is contrary to other cases, i.e., the

frequencies move counterclockwise and get a spiral-like shape as the angular momentum

per unit mass a increases to its extremal value or the dilaton D decreases to its extremal

value for the rotating black hole in figures 1–4. From this fact, we conclude that the

frequencies won’t spire in the complex ω plane if the heat capacity for the considered black

hole is always negative and vice versa. It can be confirmed by other authors’ work for
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Left three panels (D, a) Right three panels (a, D)

SP (-0.4 , 0.040) (-0.2 , 0.178) (0 , 0.341) (0 , -) (0.2 , -0.172) (0.4 , -)

CP (l = m = 0, n = 1) (-0.4 , 0.040) (-0.2 , 0.178) (0 , 0.340) (0 , -) (0.2 , -0.183) (0.4 , -)

CP (l = 1, m = 0, n = 4) (-0.4 , 0.043) (-0.2 , 0.183) (0 , 0.341) (0 , -) (0.2 , -0.181) (0.4 , -)

Table 2: The singular point (SP ) of the heat capacity and the critical point (CP ) at which

the imaginary part of the wave function related to time-dependent part for per unit time firstly

begins to oscillate for l = m = 0 and l = 1, m = 0. From the left to right, the value in each

bracket corresponds to the different vertical line in figure 5 respectively. Dashed entries in this

table correspond to the inexistent points.

Reissner-Nordström (RN) and Kerr-Newman (KN) black hole [14, 15, 18, 19] because the

heat capacity is positive in some parameter region [29, 30]

CJQ = −T

(

∂2F

∂2T

)

J,Q

=
TS3M

πJ2 + πQ4/4 − S3T 2
, (5.3)

and the frequencies really spire in the complex ω plane when the overtone number n grows

to some value for a given quantum number l.

As one knows, the quasinormal frequencies of a black hole can test the stability of

the spacetime against small perturbation [1]. Because the wave function related to time-

dependent part Φ ∼ e−iωt of the massless scalar perturbation depends on ω, we give

trajectories of the imaginary part of the wave function related to time-dependent part for

per unit time Im(e−iω) versus a and D for the first oscillation of the scalar quasinormal

frequencies of this EMDA black hole with l = m = 0 in the middle two panels and

l = 1, m = 0 in the bottom ones of figure 5. In each panel, the different vertical lines

correspond to the critical points at which the imaginary part of the wave function related

to time-dependent part begins to oscillate obviously.

Considering that we are looking at figure 5, the agreement of the singular point of

the heat capacity with the critical point at which the imaginary part of the wave function

related to time-dependent part for per unit time begins to oscillate obviously is quite

impressive. In order to compare to each other, we present the singular point (SP ) of the

heat capacity and the critical point (CP ) which the imaginary part of the wave function

related to time-dependent part begins to oscillate obviously for l = m = 0 with n = 1

and l = 1,m = 0 with n = 4 in table 2. It should be noted that the heat capacity is

always positive for the cases a > 0.341 (for 2MADM = 1) with decreasing D from zero

to its extremal value, so there is no the singular point (SP ) of the heat capacity and the

imaginary part of the wave function related to time-dependent part begins to oscillate

directly without the critical point (CP ) for the case a = 0.4 (i.e., the inexistent points

(0.4, -)).

From figure 5 and table 2 we find that the singular point of the heat capacity is in

good agreement the critical point which the imaginary part of the wave function related to

time-dependent part for per unit time begins to oscillate obviously. Because it is difficult to

accurately determine the position of these critical points, we can see some of the differences

between SP (singular points) and CP (critical points) about 8%. We have checked it and
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Figure 5: Top two panels describe the behavior of the heat capacity CJQ versus a and D. The other

four panels show trajectories of the imaginary part of the wave function related to time-dependent

part for per unit time versus a and D for the first oscillation of the scalar quasinormal frequencies

of the EMDA black hole with l = m = 0 and l = 1, m = 0. The different dashed lines correspond to

cases of increasing a from zero to its extremal value for D = 0, −0.2 and −0.4 respectively in the

left three panels, but correspond to cases of decreasing D from zero to its extremal value for a = 0,

0.2 and 0.4 respectively in the right ones. The different vertical lines in each panel correspond to

the singular points of the heat capacity or the critical points at which the imaginary part of the

wave function related to time-dependent part begins to oscillate obviously. These panels tell us that

the critical point is just the singular point of the heat capacity, which is the second order phase

transition point of Davies.
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found it available for other cases which the imaginary part of the wave function related

to time-dependent part begins to oscillate obviously when the overtone number n grows

to some value for a given quantum number l. It is shown that the critical point is just

the singular point of the heat capacity, which is the second order phase transition point of

Davies [29 – 31]. For the non-rotating GHSD black hole (i.e., the inexistent points (0, -)),

there is no the second order phase transition point. The fact seems to imply that there

is some relation between the dynamical evolution and thermodynamic instabilities for the

black hole which needs to be further investigated.

6. Summary

The massless scalar quasinormal frequencies of the stationary axisymmetric EMDA black

hole have been calculated numerically by using Leaver’s continued fraction method. The

fundamental quasinormal frequencies and the high overtones quasinormal frequencies are

obtained. It is shown that in the complex ω plane the frequencies generally move counter-

clockwise as the angular momentum per unit mass increases. They get a spiral-like shape,

moving out of their Schwarzschild or non-rotating GHSD black hole values and “looping

in” towards some limiting frequency as the angular momentum per unit mass tends to its

extremal value. For a given angular quantum number l, the number of spirals increases

as the overtone number n increases. But for a given n, the increasing l has the effect of

“unwinding” the spirals. It has been illustrated that both the real and imaginary parts of

the frequencies are oscillatory functions of the angular momentum per unit mass a. The

oscillation starts earlier and earlier as n grows for a fixed l, but it begins later and later as

l increases for a fixed n.

We also study the dilaton-dependent relation to the quasinormal frequencies. It has

been known that for the non-rotating GHSD black hole, the dilaton parameter D, which

is related to the electric charge of this EMDA black hole, cannot make the frequencies

spire in the complex ω plane, which is qualitatively different from the charge Q of the RN

black hole. But for the rotating black hole, it is found that the frequencies generally move

counterclockwise as the dilaton D decreases. They get a spiral-like shape, moving out of

their rotating Kerr black hole values and “looping in” towards some limiting frequency

as the dilaton tends to its extremal value. For a given angular quantum number l, we

observe that the number of spirals increases as the overtone number n increases. But for

a given overtone number n, the increasing l has the effect of “unwinding” the spirals. It

is also illustrated that the real and imaginary parts of the quasinormal frequencies are

the oscillatory functions of the dilaton D. The oscillation starts earlier and earlier as the

angular momentum per unit mass a increases or the overtone number n grows for a fixed

l, but it begins later and later as the angular quantum number l increases for a fixed n.

It should be noted that the oscillatory functions of the angular momentum per unit mass

a depend on the dilaton D, and the oscillation begins earlier and earlier as the dilaton

D decreases. Thus, our study shows the qualitatively different properties between the

dilaton spacetimes in string theory and those appearing in general relativity because of the

appearance of dilaton.
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We give the so-call “Spiral-like Criterion” and point out that the frequencies won’t

spire in the complex ω plane if the heat capacity for the considered black hole is always

negative and vice versa. However, the most interesting outcome of our investigation is

that the critical point, at which the imaginary part of the wave function related to time-

dependent part begins to oscillate obviously when the overtone number n grows to some

value for a given quantum number l, is just the singular point of the heat capacity which

is the second order phase transition point of Davies by comparing the singular point of

the heat capacity with the critical point for this EMDA black hole. The fact seems to

imply that there is some relation between the dynamical evolution and thermodynamic

instabilities for the black hole which needs to be further investigated.
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